Real World Exadata

Presented by: Kerry Osborne March 7, 2012

whoami -

Worked with Oracle Since 1982 (V2) Working with Exadata since early 2010 Work for Enkitec (www.enkitec.com) (Enkitec owns a Half Rack – V2/X2) Many Exadata customers and POCs Many Exadata Presentations (many to Oracle) Exadata Book

Blog: kerryosborne.oracle-guy.com

What's the Point?

- Part 1: Real World Statistics
- Part 2: How To Be Sure Your Getting What You Paid For

Poll - How Many In The Audience Are Already Using Exadata?

Part 1: Statistics*

- 51 Database Machines
- 22 Companies
- Revenues ~\$50M to ~\$25B
- non-RAC to 16 node RAC cluster
- Basic (mini) X2-8

* Not a statistically significant or random sample

Sizes

Number of Racks:*

Full	-	11	or	22 %
Half	_	12	or	24 %
Quarter	-	27	or	53 %
Basic	-	1	or	2%

Average Size: 0.468

Number of Companies:

Full	—	3	—	11 %
Half	-	9	-	33 %
Quarter	_	15	—	55%

Company Sizes:

Large	(>\$1B)	_	10	-	45 %
Medium	ı	-	5	-	23 ક
Small	(<\$200М)	_	7	_	32 %

* A few have additional storage cells

Models

Generations:

V1	_	3	or	6 %
V2	_	10	or	20 웅
X 2-2	_	28	or	73 %
X2-8	_	1	or	2%

Drives Types:*

Hi Perf - 6 or 12% Hi Cap - 45 or 88%

* Flash Cache tends to cover up drive deficiencies

Workload (DW, OLTP, Mixed)

This one is hard because there are few "pure" workloads!

Primary Usage:

DW	-	29	or	57%
OLTP	_	20	or	40 %
Mixed	_	2	or	4 8

Primary Application:

Custom	-	30	_	59 %
PeopleSoft	_	10	-	20 응
eBiz	-	5	-	10 응
Other	-	6	-	12 %

Consolidations

Most Companies in this Sample are Consolidating on Exadata

 Yes
 34
 or
 67%

 No
 16
 or
 31%

 Unknown
 1
 or
 2%

Types:

- DW and OLTP
- Combining Many Disparate Systems
- "Cloud" Initiatives
- Unconsolidated Consolidations
 - Consider 1 Full Rack -> 4 X 2-Node RAC Clusters

Multiple Racks

Most Companies in this Sample Bought More than One Rack

Single - 3 or 14% Multiple - 19 or 86%

Note: 4 of the 19 companies w/ multiple Exadatas started with a single DBM

Why?

Patching Dev / Test DR

Part 1a: Stories

- common migration strategies
- recommended parameter/configuration settings
- suitability for various workloads (OLTP vs. DW vs. mixed)
- indexing strategies
- compression strategies
- organizational challenges presented by Exadata

Common Migration Strategies

Logical

- Data Pump
- exp / imp
- Golden Gate
- CTAS Across DBLink
- Physical
 - RMAN
 - TTS
 - Dataguard Physical Standby
 - ASM Rebalance

Digression: Fork Lift Migrations

- Just Say No!
- 9i RBO to 11gR2 on Exadata
 - pour some more salt on the wounds
- Good News is Exadata Can Cover Up Many Sins
- Bad News is it Can't Cover Up Everything
- Typical Results (2-3X Faster Than Before)

Digression: Fork Lift Migrations

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time Wait Class
DB CPU		21,685		49.1
SQL*Net more data from dblink	52	7,296	1.E+05	16.5 Network
Streams miscellaneous event	12 , 525	6,274	501	14.2 Other
enq: TM - contention	671	5,478	8164	12.4 Applicatio
cell single block physical rea	3,935,035	2,231	1	5.1 User I/O

Digression: Fork Lift Migrations

ENKITEC@IQP> @offload_percent Enter value for sql_text: Enter value for min_etime: Enter value for min_avg_lio:

TOTAL OFFLOADED OFFLOADED_%

41	3	7.32%
		,

1 row selected.

Elapsed: 00:00:01.79 ENKITEC@IQP> @fsxo

SQL_ID	CHILD	PLAN_HASH	EXECS	AVG_ETIME	AVG_PX	OFFLOAD	IO_SAVED_%	AVG_LIO
0q3s48vg6ddhg	5	1556289656	2	88.74	0	No	.00	13,404,990
0sxmqjfv2xzf3	0	3139973520	1	6.54	0	No	.00	892 , 423
1n4rfxtg6zg4x	0	3889350093	1	8.85	0	No	.00	656 , 485
lr5u1bq8xq2xj	0	1092323636	1	19.73	0	No	.00	4,297,589
1vgh9gswphvdy	1	1599020674	2,787	.08	0	Yes	100.00	659 , 786
1vgh9gswphvdy	3	1599020674	5,944	.09	0	Yes	100.00	661 , 692
1vgh9gswphvdy	4	1599020674	3,877	.07	0	Yes	100.00	661 , 985
22nu7gq6awt2j	1	4032143122	2	27.85	0	No	.00	4,102,245
238fx4v7gsv95	1	3046949154	2	84.78	0	No	.00	13,323,956
2b8c16v3cjsua	1	1543662060	2	92.80	0	No	.00	14,404,649
2pbxscctg6cnj	1	3046949154	2	84.28	0	No	.00	13,323,720

Common Configuration

- Auto DOP Off
- SPM Off
- Buffer Cache Smaller than on non-Exadata
- Flash All Flash Cache
- Huge Pages enabled (no AMM)
- parallel_max_processes < default
- Backups generally RMAN to recovery area then to tape

Suitability for Various Workloads

•OLTP

- Good
- Mixed
 - Excellent
- DW
 - Killer

Indexing Strategies

Some Suggestions We've Heard Drop All Indexes Don't Change Anything

Indexing Strategies

Single Row Access (OLTP) Needs Indexes Most Workloads are Mixed Optimizer Doesn't Know About Smart Scans Challenge is to Use Indexes When Appropriate You Probably Need Fewer Indexes You May Have to Get Creative optimizer_use_invisible_indexes optimizer_index_cost_adj

Compression Strategies

- HCC Provides Exceptional Compression Ratios
 - 10X is pretty good guess
 - 6X 60X in Practice
- Oddly Enough Many are Not Using HCC
- HCC Not Appropriate for Active Data
- HCC Needs Partitioning
 - Requires Direct Path Loads
 - Update Move
 - Single Row Update Locks Entire CU
 - Falls Back to OLTP

Organizational Challenges

- Who Should Manage The Beast
- General Thinking is DBA's (DMA's ?)
- It is 11g DB with ASM After All
- Patching Requires More Knowledge Than Most DBAs Have
 - Linux
 - Network
 - Hardware
 - Storage
- Best Approach for Most is Combination of Sysadmin / DBA
- SAN Guys are Out of the Picture
- CAB Story "What happens if I run out of space?"

Part 2: How to Know You're Getting What You Paid For

How to Tune an Exadata (radio edit)

Check to see if you're getting Smart Scans!

If you're not, figure out why and correct the situation!

It's Pretty Simple.

3 things you'll need to know:

- the Optimizations
- the Requirements
- how to Measure

The Big Ah Ha!

The Bottleneck on Many (Most) Large Databases is between the Disk and the DB Server(s)!

How to Speed Up?

Make the Pipe Bigger/Faster Reduce the Volume

* The fast way to do anything is not to do it!

Offloading - The "Secret Sauce"

Offloading vs. Smart Scan (what's the difference)

Offloading – generic term meaning doing work at the storage layer instead of at the database layer

Smart Scan – query optimizations covered by "cell smart table/index scan" wait events

Smart Scan Optimizations

Column Projection Predicate Filtering Storage Indexes Simple Joins Function Offloading Virtual Column Evaluation HCC Decompression Decryption

Smart Scan Requirements

Full Scan Direct Path Read Object Stored On Exadata Storage

Why?

Very Simple Explanation:

Various full scan functions()

- kcbldrget() direct path read function
- kcfis_read() kernel file intelligent storage read (Smart Scan)

*why it's there: checkpointing and non-block data return

How to Tell if You got a Smart Scan

Wolfgang Itl

- probably best

Rahn It!

- unfortunately this doesn't work

- 10053 trace (and the optimizer) has no idea

- DBMS_SQLTUNE.REPORT_SQL_MONITOR

Millsap It!

- (10046 trace)
- most fool proof?

TP It!

- Tanel's snapper
- v\$sesstat, v\$session_event
- great if it's happening now

KO It!

- My fsx.sql script
- V\$SQL family of views: IO_CELL_OFFLOAD_ELIGIBLE_BYTES
- saved in AWR so works on historical data as well

enkitec

Requirement 1: Full Scans

- Table
- Partition
- Materialized View
- Index (FAST FULL SCAN Only)

SYS@shareprd1> @op_event_awr.sql Enter value for event: cell smart%

EVENT	OPERATION	COUNT(*)
cell smart index scan	INDEX STORAGE FAST FULL SCAN INDEX STORAGE SAMPLE FAST FULL SCAN	124 234
cell smart table scan	MAT_VIEW ACCESS STORAGE FULL TABLE ACCESS STORAGE FULL	1 27747

* Query from DBA_HIST_ACTIVE_SESS_HISTORY

Requirement 2: Direct Path Reads

Bypass buffer cache – direct to PGA Decision not part of optimizer's job Traditionally Used by Parallel Slaves Non-Parallel Also Possible

- Serial Direct Path Reads (adaptive)
- algorithm not fully documented (but more aggressive in 11g) *
 - size of segment (table or index or partition)
 - size of buffer cache
 - number blocks already in buffer cache
 - _small_table_threshold
 - _very_large_table_threshold

* See MOS Note: 50415.1 - WAITEVENT: "direct path read"

Requirement 3: Exadata Storage

Kind of Goes Without Saying

- Possible to have non-Exadata storage or mixed
- ASM Diskgroup has an attribute: cell.smart_scan_capable
- Must be set to TRUE for Smart Scans to work
- Can't add non-Exadata storage without changing to FALSE

Demo Time

select /*+ parallel 2 */ a.col2, sum(a.col1) from kso.skew a, kso.skew b where rownum < 30000000 group by a.col2

Global Information

Status	:	DONE (ALL ROWS)
Instance ID	:	1
Session	:	SYS (1278:795)
SQL ID	:	6f2dhcj7m3k2b
SQL Execution ID	:	16777216
Execution Started	:	03/07/2012 15:04:19
First Refresh Time	:	03/07/2012 15:04:19
Last Refresh Time	:	03/07/2012 15:04:33
Duration	:	14s
Module/Action	:	sqlplus@enkdb01.enkitec.com (TNS V1-V3)/-
Service	:	SYS\$USERS
Program	:	sqlplus@enkdb01.enkitec.com (TNS V1-V3)
Fetch Calls	:	2

Global Stats

-										-				-		-								<u></u>
1	Elapsed		Сри	1	10	1	Application	1	Other	I	Fetch	1	Buffer	1	Read	I	Read	1	Write	I.	Write	L	Cell	I.
1	Time(s)	1	Time(s)	1	Waits(s)	1	Waits(s)	1	Waits(s)	I	Calls	1	Gets	1	Reqs	I	Bytes	1	Reqs	1	Bytes	L	Offload	L
-		-														-				-		-		-
1	27	1	23	1	3.56	I	0.00	I	0.33	I	2	I	73767	I	3071	I	676MB	I	1228	I	246MB	I	-3.09%	T
-		-														-				-		-		-

Parallel Execution Details (DOP=2 , Servers Allocated=4)

-		-		-		-		-		_						-		-			-	_	_						_			
I	Name	1	Туре	1	Server#	1	Elapsed		Cpu	1	10	1	Application	1	Other	L	Buffer	L	Read I	Read	1	Write	I Wr	ite	1	Cell	L I		Wa	it Events		1
I	1	1		1		1	Time(s)	1	Time(s)) 1	Waits(s)	1	Waits(s)	1	Waits(s)	1	Gets	L	Reqs	Bytes	1	Reqs	I By	/tes	10	fflo	oad I		(s	ample #)		I
-		-														-																
I	PX Coordinator		QC	1		1	7.40	1	7.23	3 1		1	0.00	L	0.17	I.	1058	L	1		1		1			1	Nak	1 26				I
I	p000	1	Set	1	1	. 1	8.11	1	6.72	2 1	1.22	1		1	0.16	1	765	L	1123 I	61MB	1	614	12	23MB	1 -	66.6	67% I					1
I	p001	1	Set	1	2	1	8.55	1	7.13	3 1	1.42	1		1	1	1	655 I	L	1103 I	59MB	1	614	12	23MB	1 -	66.6	67% I	direct p	ath i	read temp (1)	
1	p002	1	Set	21	1	. 1	1.55	1	1.12	2 1	0.43	1		1	1	1	35646 I	1	428 1	278MB	1		1			1 3	38.65	i% I				1
1	l p003	1	Set	21	2	1	1.61	. 1	1.12	2 1	0.50	1		1	1	1	35643 I	1	417 I	278MB	1		1			1 3	38.27	796 1				I

SQL Plan Monitoring Details (Plan Hash Value=1100917592)

1.1	[d	Operation	l Na	me	I Rows	1	Cost	I Time	l Start	I Execs	l Rows	I Read	l Read	Write	Write	1 (Cell	I Men	n I Tem	φΙΑ	ctivit	∶yl Ad	ctivity Detai	.1 1
I.	1		1		l (Esti	m)		Active(s)	Active	1	I (Actual)	I Reqs	Bytes	I Reqs	Bytes	1 0	ffload I	(Max) I	(Max)	I (X) ((# samples)	1
	01	SELECT STATEMENT			1			1 6	+9	1 1	1 1	1		1	1	1		1			1			j.
1	1	HASH GROUP BY	1		1	21	331G	1 7	I +8	1	1	1	1	1	1	1	I 13N		1	14.81	I Cpu	(4)	1	1
1	2 1	COUNT STOPKEY	1		1	1		1 6	+9	1	I 30M	1	1	1	1	1	1	1	1		1		1	1
1	3 1	PX COORDINATOR	1		1	1		1 6	I +9	1 5	I 30M	1	1	1	1	1	1	1	1	11.11	I Cpu	(3)	1	1
1	4 1	PX SEND QC (RANDOM)	I :TQ10	0001	1	1P	175G	1 7	+8	1 2	I 30M	1	1	1	1	1	1	1	1	7.41	I Cpu	(2)	1	1
1	5 1	COUNT STOPKEY	1		1	1		1 7	+8	1 2	I 30M	1	1	1	1	1	1	1	1		1		1	1
1	6 1	MERGE JOIN CARTESIAN	1		1	1P	175G	I 13	+2	1 2	I 30M	1	1	1	1	1	1	1	1		1		1	1
1	7.1	PX BLOCK ITERATOR	1		1 3	2M	24649	1	+2	1 2	1 2	1	1	1	1	1	1	1	1		1		1	1
1	8 1	TABLE ACCESS STORAGE FULL	I SKEW		1 3	2M I	24649	I 13	+2	1 2	1 2	1 3	I 3MB	1	1	1.4	47.09%	1	1		1		1	1
1	9 1	BUFFER SORT	1		1 3	2M	331G	I 13	+2	1 2	I 30M	1 2223	117MB	1 1228	1 246MB	1	1 205N	1 258	BM I	51.85	I Cpu	(13)	1	1
1	1		1		1	1		1	1	1	1	1	1	1	1	1	1	1	1		dire	ct path rea	ad temp (1)	1
1.3	1 01	PX RECEIVE	1		1 3	2M	10683	1 7	+2	1 2	I 64M	1	1	1	1	1	1	1	1	7.41	I Cpu	(2)	1	1
1.0	11	PX SEND BROADCAST	I :TQ10	0000	1 3	2M I	10683	1 2	+1	1 2	1 4	1	1	1	1	1	1	1	1	3.70	I Cpu	(1)	1	1
1.3	12 1	PX BLOCK ITERATOR	1		1 3	2M I	10683	1	+2	1 2	I 32M	1	1	1	1	1	1	1	1		1		1	1
1.3	13 1	INDEX STORAGE FAST FULL SCA	AN I SYS_C	003992	1 3	2M I	10683	1 2	+1	1 26	I 32M	1 845	1 557MB	1	1	1 3	38.65% I	1	1	3.70	I Cpu	(1)	1	1

Exadata Software Performance

High Transaction Volume: Telco Provider

- Customer Runs Dell, 16 Core Machines in Multiple RAC Instances
- Very High Volume of OLTP and Data Warehouse Type Queries on Same Database
- Performance Differences Were Too Excessive to Graph

SQL	Current	Exadata	Times Faster
Process 1: 6-Month Data Volume	52 min	19.5 sec	160 x
Process 2: 3-Month Data Volume	51 min	11.5 sec	269 x
Process 3: 1-Year Data Volume	50 min	37.5 sec	81 x
Process 4: 2-Month Data Volume	48 min	9.4 sec	308 x
Update SCN_CALL_PARTY_LOG	13 min	1.05 sec	744 x
Update SCN_CALL_PARTY_IDENT_LOG	7 min	.23 sec	1871 x
Select SCN_CALL_PARTY_EXTDATA_LOG	6.75 min	.47 sec	868 x

The Kübler-Ross grief cycle

Exposure to Exadata

Questions?

Contact Information : Kerry Osborne kerry.osborne@enkitec.com kerryosborne.oracle-guy.com www.enkitec.com

Specialized Exadata

